Ministère de l'éducation et de la formation

Direction régionale de Gafsa

Lycée IBN MANDHOUR METLAOUI

DEVOIR DE CONTROLE N°2

(38)(38)

Date: 03/02/2016 Durée: 2 heures Classe: 4^{ème} T₁

Matière :

Prof: GOUIDER ABDESSATAR

Sciences Physiques

CHIMIE: (7 pts)

EXERCICE 1: (4 pts)

I°/ Pour un couple acide-base AH/A correspond deux constantes d'équilibre K_a et K_b.

- 1) Qu'appelle-t-on chacune de ses constantes ?
- 2) Établir les expressions de ces deux constantes en fonction des concentrations.
- 3) a- Établir la relation liant K_a , K_b et K_e (produit ionique de l'eau).
 - **b-** En déduire une relation entre pK_a , pK_e et pK_b .

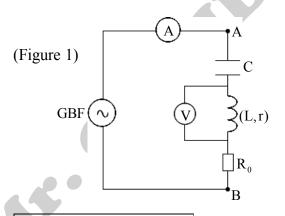
II°/ On considère la réaction suivante : $HNO_2 + HCO_2 \rightleftharpoons NO_2 + HCO_2H$.

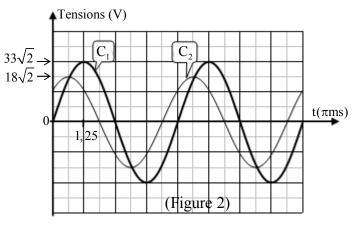
- 1) Montrer qu'il s'agit d'une réaction acide-base.
- 2) Quels sont les couples acide-base mis en jeu au cours de cette réaction?
- 3) a- Exprimer la constante d'équilibre K de la réaction en fonction de K_{a1} et K_{a2}.
 - b- On donne : $pK_{a1}(HNO_2/NO_2) = 3.3$; $pK_{b2}(HCO_2H/HCO_2) = 10.25$ et $pK_e = 14$. Calculer la valeur de K.
 - c- Comparer les forces des acides des couples mis en jeu dans la réaction.
 - d- En déduire une comparaison de la force de leurs bases conjuguées.
- 4) On considère un système chimique contenant : 0,1 mol de HNO₂, 0,2 mol de HCO₂H, 0,5 mol de HCO₅ et 0,4 mol de NO; Le système est-il en équilibre ? Si non dans quel sens évolue-t-il ? Justifier.

EXERCICE 2: (3 pts)

La mesure, à 25°C, du pH de chacune de trois solutions aqueuses d'acides : (S₁), (S₂) et (S₃) de même concentration molaire $C = 5.10^{-2}$ mol.L⁻¹, donne les valeurs consignées dans le tableau suivant :

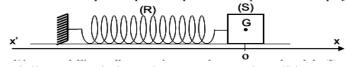
Acide	Solution aqueuse	pН	$ au_{ m f}$
A_1H	(S_1)	2,55	
A ₂ H	(S_2)	3,05	
A ₃ H	(S_3)	1,3	

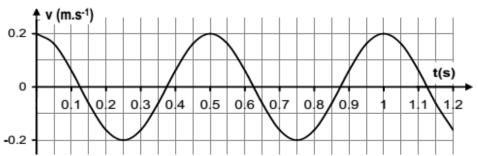

- 1) a- Rappeler, en fonction de C et de pH, l'expression du taux d'avancement final τ_f d'une solution acide.
 - **b-** Calculer le taux d'avancement final τ_f de chacun des trois acides.
 - c- En déduire que l'un des trois acides est fort tandis que les deux autres sont faibles.
- 2) a- Dresser le tableau d'avancement volumique d'un acide faible AH.
 - **b-** Montrer que la constante d'acidité K_a de tout acide faible AH peut s'écrire sous la forme : $K_a = \frac{10^{\text{pn}} \cdot \tau_f}{1 \tau_f}$.
 - **c-** Rappeler l'expression du **pH** d'un acide faible.
- 3) a- En déduire l'expression de pka en fonction de pH et de C.
 - **b-** Comparer les **pK**_a des deux acides faibles et en déduire celui qui est le plus fort.


PHYSIQUE: (13 pts)

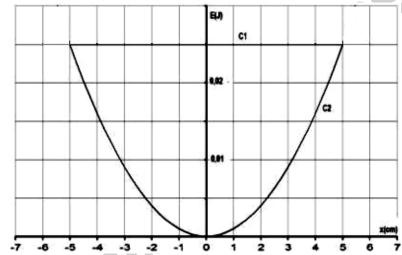
EXERCICE 1: (7 pts)

On se propose de déterminer les caractéristiques R, r, L et C d'un dipôle AB schématiser sur la figure-1 ci-dessous.


- On excite le dipôle AB avec une tension $\mathbf{u}(t) = \mathbf{U}_{m} . \sin(2\pi N t)$, délivrée par un G.B.F.
- ❖ On mesure l'intensité efficace I du courant.
- ❖ On mesure, à l'aide d'un voltmètre, la tension efficace U_B aux bornes de la bobine : $U_B = 9$ V.
- \diamond On observe les deux tensions $\mathbf{u}(t)$ et $\mathbf{u}_{\mathbf{R}\mathbf{0}}(t)$ sur un oscilloscope bicourbe convenablement branché aux bornes du dipôle \mathbf{AB} .
- 1) Reproduire la figure-1 et faire le branchement de l'oscilloscope.
- 2) Pour une valeur N₁ de la fréquence N du G.B.F, on observe l'oscillogramme de la figure-2.
 - a- Identifier les deux courbes (C_1) et (C_2) .
 - **b-** Sachant que l'ampèremètre indique I = 0,3 A, déterminer les valeurs de :
 - ➤ la fréquence N₁ du G.B.F;
 - la tension efficace U du G.B.F;
 - \triangleright la tension efficace U_{R0} aux bornes du conducteur ohmique ainsi que la valeur de la résistance R_0 ;
 - ➤ l'impédance Z du circuit.
 - c- i/ Déterminer le déphasage $\Delta \varphi = \varphi_i \varphi_u$ entre l'intensité i(t) du courant qui traverse le circuit et la tension u(t).
 - ii/ Quel est alors le caractère du circuit à cette fréquence N₁?
- 3) a- Etablir l'équation différentielle de cet oscillateur en fonction de l'intensité i(t).
 - **b-** On admet que $i(t) = 0.3\sqrt{2.\sin(2\pi Nt + \phi_i)}$ est une solution de cette équation différentielle, faire la construction de Fresnel puis montrer que $r \approx 17.8 \ \Omega$.
 - c- Calculer l'impédance Z_B de la bobine et déduire la valeur de L.
 - **d-** Calculer la capacité C du condensateur.
 - e- Etablir les expressions numériques des deux tensions : $\mathbf{u}_{R0}(t)$ et $\mathbf{u}_{C}(t)$ respectivement aux bornes du conducteur ohmique et du condensateur.
- 4) On fait varier la fréquence N du G.B.F jusqu'à ce que les courbes de $\mathbf{u}(t)$ et de $\mathbf{u}_{R0}(t)$ soient en phase. Etablir l'expression instantanée $\mathbf{i}(t)$ de l'intensité du courant dans le circuit.

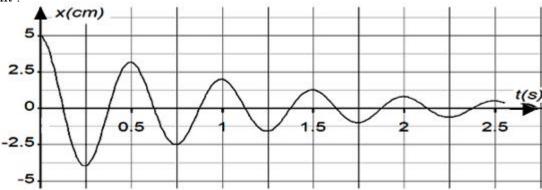

EXERCICE 2: (6 pts)

On considère un pendule élastique formé par un solide (S) de masse m et un ressort (R) à spires non jointives et de raideur K. Le pendule peut se déplacer sur un plan horizontal parfaitement lisse.


1) Etablir l'équation différentielle caractéristique du mouvement du solide (S).

- 2) Sachant que cette équation différentielle admet une solution de la forme $x(t) = X_m \cdot \sin(\omega_0 t + \phi_x)$.
 - a- Etablir la relation entre $(V_m \text{ et } X_m)$ et $(\varphi_v \text{ et } \varphi_x)$.
 - **b-** On donne ci-dessous le chronogramme de la variation de la vitesse en fonction du temps : $\mathbf{v} = \mathbf{f}(\mathbf{t})$:

Déterminer les valeurs de : T_0 , V_m , ϕ_v et ω_0 .


- c- Déduire les valeurs de X_m et ϕ_x , puis écrire l'expression numérique de x = f(t).
- 3) Montrer que l'énergie mécanique E du système se conserve au cours du temps.
- 4) Le graphe suivant représente les courbes $E_{pe} = f(x)$ et E = g(x), où E_{pe} et E représentent respectivement l'énergie potentielle élastique et l'énergie mécanique du pendule élastique.

- a- Identifier chacune des deux courbes (C_1) et (C_2) en justifiant la réponse.
- b- En exploitant le graphe, déterminer les valeurs de la raideur K du ressort et de la masse m du solide.
- c- Déterminer l'énergie cinétique du solide lorsqu'il passe par le point d'abscisse x = 4 cm.
- 5) Le solide (S) est maintenant soumis à des forces de frottement de type visqueux $\vec{\mathbf{f}} = -\mathbf{h} \cdot \vec{\mathbf{v}}$.
 - a-L'équation différentielle du mouvement du solide (S) est : $\frac{d^2x(t)}{dt^2} + 4.96 \frac{dx(t)}{dt} + 157.91x(t) = 0$.

Trouver la valeur du coefficient du frottement **h**.

b- La courbe relative à l'élongation du centre d'inertie en fonction du temps, x(t) est donnée par le graphe suivant:

i/ Nommer le régime d'oscillation.

ii/ Calculer la variation de l'énergie mécanique ΔE du pendule entre $t_1 = 0$ s et $t_2 = 1.5$ s.